Computing elliptic curve discrete logarithms with the negation map
نویسندگان
چکیده
It is clear that the negation map can be used to speed up the computation of elliptic curve discrete logarithms with the Pollard rho method. However, the random walks defined on elliptic curve points equivalence class {±P} used by Pollard rho will always get trapped in fruitless cycles. We propose an efficient alternative approach to resolve fruitless cycles. Besides the theoretical analysis, we also examine the performance of the new algorithm in experiments with elliptic curve groups. The experiment results show that we can achieve the speedup by a factor extremely close to √ 2, which is the best performance one can achieve in theory, using the new algorithm with the negation map.
منابع مشابه
Elliptic Curve Discrete Logarithm Computations on FPGAs
Computing discrete logarithms takes time. It takes time to develop new algorithms, choose the best algorithms, implement these algorithms correctly and efficiently, keep the system running for several months, and, finally, publish the results. In this paper, we present a highly performant architecture that can be used to compute discrete logarithms of Weierstrass curves defined over binary fiel...
متن کاملComputing elliptic curve discrete logarithms with improved baby-step giant-step algorithm
The negation map can be used to speed up the computation of elliptic curve discrete logarithms using either the baby-step giant-step algorithm (BSGS) or Pollard rho. Montgomery’s simultaneous modular inversion can also be used to speed up Pollard rho when running many walks in parallel. We generalize these ideas and exploit the fact that for any two elliptic curve points X and Y , we can effici...
متن کاملOn the Use of the Negation Map in the Pollard Rho Method
The negation map can be used to speed up the Pollard rho method to compute discrete logarithms in groups of elliptic curves over finite fields. It is well known that the random walks used by Pollard rho when combined with the negation map get trapped in fruitless cycles. We show that previously published approaches to deal with this problem are plagued by recurring cycles, and we propose effect...
متن کاملNew algorithm for the discrete logarithm problem on elliptic curves
A new algorithms for computing discrete logarithms on elliptic curves defined over finite fields is suggested. It is based on a new method to find zeroes of summation polynomials. In binary elliptic curves one is to solve a cubic system of Boolean equations. Under a first fall degree assumption the regularity degree of the system is at most 4. Extensive experimental data which supports the assu...
متن کاملQuantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms
We give precise quantum resource estimates for Shor’s algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUi|〉. We determine circuit implementations for reversible modular a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 195 شماره
صفحات -
تاریخ انتشار 2011